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PREDICTING THE RESPONSE OF POPULATIONS TO 

ENVIRONMENTAL CHANGE1 


ANTHONYR. IVES 
Department of Zoolagy, University of Wisconsin at Madison, Madison, Wisconsin 53706 USA 

Abstract. When subject to long-term directional environmental perturbations, changes 
in population densities depend on the positive and negative feedbacks operating through 
interactions within and among species in a community. This paper develops techniques to 
predict the long-term responses of population densities to environmeiltal changes using 
data on short-term population fluctuations driven by short-term environmental variability. 
In addition to giving quantitative predictions, the techniques also reveal how different 
qualitative patterns of species interactions either buffer or accentuate population responses 
to environmental trends. All of the predictions are based on regression coefficients extracted 
from time series data, and they can therefore be applied wit; a minimum of mathematical 
and statistical gymnastics. 

Key words: community ecology; environmental change; population dynamics; species interac- 
tions; stochastic models. 

garden 1975, Turelli 1977, 1978, Turelli and Gillespie 

One of the great challenges in ecology is to predict 1980, Nisbet and Gurney 1982, Ives 1995). In contrast 

how environmental fluctuations change the abundances to short-term environmental fluctuations, long-term en- 

of species in a community (Kareiva et al. 1993). This vironmental trends may occur slowly enough for pop- 

challenge is particularly pressing in a world undergoing ulation densities to track. For long-term environmental 

major anthropogenic environmental changes, such as trends, interactions among species are particularly im- 

lake acidification (Charles 1991), increasing levels of portant in determining how population densities 

toxins in the air and water (Graedel and Crutzen 1990), change. since slow environmental changes allow time 

and the possibility of anthropogenic global climate for indirect interactions among species to have strong 

change (Schneider 1993). The difficulty in predicting effects (Levins 1975, Levine 1976, Yodzis 1989). 

the consequences of environmental changes is that The conceptual differences between short- and long- 

changes in the abundance of a species depend not only term environmental changes are illustrated by the dis- 

on the direct effects of the environment on its survival cussion in Bender et al. (1984) of two different types 

and fecundity. but also the indirect effects of interac- of experiments, PULSE and PRESS experiments. In 

tions with other species in the community (Connell PULSE experiments, interactions among species are 

1961, Paine 1966, 1980, Davidson et al. 1984, Schind- measured by imposing a sudden shock to a community 

ler 1990, Webster et al. 1992, Ives and Gilchrist 1993, such as greatly increasing or decreasing the density of 

Wootton 1994). Interactions with other species produce one species. These experiments may be analyzed to 

both positive and negative feedbacks that determine determine how interactions among species affect the 

the ultimate response of population densities to envi- rate at which densities return to their pre-shock levels. 

ronmental changes. Short-term environmental fluctuations operate in a sim- 

When discussing the response of populations to en- ilar fashion, although shocks to the system occur fre- 

vironmental changes, it is important to distinguish be- quently rather than just once. In PRESS experiments, 

tween short-term environmental fluctuations and long- a perturbation is applied by shifting some structural 

term environmental trends. Short-term environmental feature of the community to a different level, for ex- 

fluctuations continuously buffet populations and pro- ample by elevating food availability for some species 

duce the variability in population densities seen in in a community. In this case, Interactions among spe- 

many species (Strong 1986a, b). A large number of cies are seen in the re-establishment of new population 

theoretical studies are devoted to short-term environ- abundances, rather than in the return (or non-return) of 

mental fluctuations, asking what types of life history population densities to former values following a shock 

characteristics and community interactions act to buffer in a PULSE experiment. Long-term environmental 

population densities against environmentally driven trends operate in the same fashion as PRESS experi- 

variability (e.g., May 1973, 1974, Leigh 1975, Rough- ments if population densities can track slow environ- 
mental changes. 

' Manuscript received 9 September 1993; revised 14 July This paper has two goals. The first is to develop 
1994; accepted 25 July 1994; final version received 16 Sep- techniques to predict how population abundances will 
tember 1994. change in response to long-term environmental trends. 
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These techniques have the same mathematical structure 
as "loop analysis" (Levins 1975, Lane 1986, Yodzis 
1989) in that they explicitly account for the interactions 
among species, incorporating both positive and nega- 
tive feedbacks in the community. Changes in mean 
population abundances in response to environmental 
trends are predicted by analyzing the naturally occur-
ring variability in population densities before the onset 
of the environmental trend. Thus, the objective is to 
predict the long-term (PRESS) changes in population 
densities in response to environmental trends from data 
on the short-term (PULSE) population responses to 
short-term environmental fluctuations. 

The second goal of the paper is to partition out the 
different factors driving changes in mean population 
densities in response to environmental trends. The anal- 
ysis shows that the response of the mean population 
density of a particular species to environmental trends 
depends on four factors: (1) the overall magnitude of 
the effect of the environmental change on all of the 
species in a community; (2) the pattern of how the 
environmental change affects different species within 
the community; (3) the overall strength of interaction 
that the particular species exerts on other species in the 
community; and (4) the pattern of interaction of the 
particular species with other species in the community. 
The first two of these factors are characteristics of the 
specific environmental stressor under investigation, 
while the third and fourth factors are properties of the 
biotic interactions within the community independent 
of the specific environmental stressor. Identifying 
which characteristics are specific to a particular envi- 
ronmental stressor and which are not has the pragmatic 
benefit of simplifying the study of multiple environ- 
mental stressors in the same community. Although the 
main focus in this paper is the response of populations 
to a single environmental stressor, natural communities 
are often subject to numerous stressors, and to examine 
each stressor independently would be an overwhelming 
task. Since the biotic factors 3 and 4 are independent 
of particular environmental stressors, this information 
can be shared among investigations of different envi- 
ronmental stressors. 

This paper is divided into two parts. The first gives 
analyses of the response of a single species to envi- 
ronmental trends. Although these analyses are unreal- 
istic in the sense that no species exists in isolation from 
all other species, they provide a useful starting point 
to develop the multispecies techniques. The second part 
of the paper analyzes multispecies communities. In ad- 
dition to focusing on the changes in population density 
of a particular species, I also analyze how pairs of 
species will likely change in density with respect to 
each other. For example, if two species have similar 
functional roles in a community, will changes in the 
mean density of one species be compensated by op- 
posite changes in the mean density of the other (Vi- 
tousek 1990, Frost et al. 1994)? In both the single and 

multispecies sections I apply the prediction techniques 
to numerical examples. The object of these examples 
is to illustrate possible patterns in the response of spe- 
cies to environmental trends and to demonstrate the 
prediction techniques, rather than to do a thorough nu- 
merical analysis of the precision of the techniques. 

The general form of the data to be analyzed in this 
section is summarized by the equation 

Here, n(t) is the population density of the species at 
time t, and u(t) is the environmental stressor that un- 
dergoes a directional change in the mean. For example, 
for the case of lake acidification, u(t) will be pH, and 
for global climate change, u(t) might be mean June 
temperature or the number of frost-free days in a year. 
The parameter w(t) represents environmental variabil- 
ity that does not undergo a directional change. The 
population growth rateflu(t), n(t), w(t)] depends on the 
population size, the environmental stressor that under- 
goes a directional change, and background environ- 
mental variability. Both u(t) and w(t) are random vari- 
ables, characterized by a mean, variance, and other 
statistical moments. 

Eq. 1 specifies several biological assumptions about 
the single-species data. First, environmental variability 
affects the population from one sample, t, to the next, 
t + 1. Many environmental factors will operate over a 
shorter time step than the population sampling. For 
example, an insect with a generation time of a year 
might be sampled only annually, while a cold snap in 
April during a vulnerable insect stage may cause high 
mortality in a single day. Even though an environ-
mental stressor may act only over a short time, it may 
nonetheless affect changes in population densities be- 
tween samples. The data described by Eq. 1 include 
any type of environmental variability that affects 
changes in density from one sample to the next. Second, 
Eq. 1 assumes that there is only a single environmental 
stressor that undergoes a long-term directional trend. 
For many types of environmental changes, a variety of 
environmental factors will be affected. For example, 
anthropogenic climate change is predicted to affect 
both temperature and precipitation (Schneider 1993). 
In addition, temperature itself cannot be considered a 
single variable if rising temperatures at one time of 
year have different effects on population dynamics than 
similar changes at another time of year. For simplicity 
of presentation, only the effects of a single environ- 
mental parameter are analyzed here, although multiple 
factors can be encapsulated into u(t) by letting it denote 
some aggregate measure of the environment. Third, 
there is no population age structure or delayed effects 
of density dependence in the model (Turchin 1990, 
Murdoch 1993). Techniques for analyzing data with age 
structure and delayed density dependence will be sim- 
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ilar to those developed for multispecies interactions 
(Royama 1981, Turchin and Taylor 1992), although I 
do not develop these techniques here. 

Despite these biological restrictions, the data can ex- 
hibit complicated patterns. The relationship between 
the population growth rate, flu(t), rz(t), w(t)], and pop- 
ulation density rz(t) and the environmental terms u(t) 
and w(t) may be nonlinear, and there may be interac- 
tions among these terms. Furthermore, the environ- 
mental terms u(t) and w(t) may be serially autocorre- 
lated, as will be the case if multiple samples are taken 
each year and there are seasonal fluctuations in the 
environmental stressors. Since population densities de- 
pend on u(t), autocorrelation in successive values of 
u(t) will produce correlation between n(t) and u(t). 
Thus, Eq. 1 can describe complicated nonlinear pop- 
ulation dynamics with complicated correlations among 
stochastic variables. 

Simulated single-species example 

Before developing the prediction techniques for sin- 
gle-species data, I will first give a simulated example 
to illustrate what types of patterns may arise in response 
to long-term environmental trends. After I develop the 
prediction techniques, I will apply them to this ex 
ample. 

Consider the stochastic version of the Ricker equa- 
tion (May 198 l ) :  

The parameter r measures the strength of density de- 
pendence, with larger values implying a greater de- 
crease in the per capita population growth rate with 
increasing density. The parameter p. scales the density- 
independent component of the per capita population 
growth rate. The random variable u(t) produces vari- 
ability in the density-independent population growth 
rate and is assumed to follow a normal distribution. 
Environmental variability other than u(t) is included in 
the random variable w(t), which is also distributed ac- 
cording to a normal distribution. Neither of the envi- 
ronmental random variables is autocorrelated; this sim- 
plifies the numerical analysis. In this example, the 
environmental stressor u(t) appears as an exponent. 
Therefore, a log transform of the model makes u(t) a 
linear term. Although this might appear a special case, 
suitable transforms may often be applied to real data 
sets to make population growth rates depend linearly 
on an environmental stressor. This will be true when- 
ever the population growth rate is a monotonic function 
of the environmental stressor. 

Eq. 2 is illustrated in Fig. 1, which shows a graph 
of rz(t + 1) vs. n(t) in the absence of environmental 
stochasticity. Greater values of r correspond to in-
creased density dependence. For r < 1, the dynamics 
for population densities around the deterministic equi- 
librium are monotonic, while for r > 1, dynamics 
around equilibrium are overcompensating. The values 

Density at time t 

FIG.1. The population density at time t + 1 vs. the density 
at time t for Eq. 2 with stochasticity removed. r determines 
the strength of density dependence. Values of I*, equal r to 
give deterministic equilibrium population densities of one. 

of r = 0.2, 1, and 1.8 will be used throughout this 
example. The dynamics produced by Eq. 2 are given 
in Fig. 2. Fig. 2d shows u(t) vs. t for 100 time units. 
For the first 50 time units, the mean of u(t) is zero, and 
at t = 51 the mean increases to 0.2. Fig. 2a-c shows 
the population densities given by Eq. 2 with r = 0.2, 
1, and 1.8, respectively, subject to the same pattern of 
environmental stochasticity, u(t) and w(t). As the mean 
of u(t) increases, so do mean population densities, and 
the magnitude of the change depends on the strength 
of density dependence, r; the weaker the density de- 
pendence (smaller values of r), the greater the change 
in mean density. As shown in Fig. 2c, increasing the 
mean of u(t) may also affect the variance in population 
densities. Here, the increase in u(t) produces strong 
overcompensating population dynamics; in the deter- 
ministic counterpart of the model, removing the vari- 
ance in u(t) and w(t), the population dynamics become 
unstable when the mean of u(t) increases by 0.2. 

Fig. 3 shows the same data as Fig. 2, but in a manner 
to highlight the difference between short-term and 
long-term population responses to environmental vari- 
ability. Each graph in Fig. 3 shows the relationship 
between rz(t + 1) and u(t) for t = 1-100. When there 
is weak density dependence (Fig. 3a), the change in 
the population density from the first to the second sets 
of 50 time units is greater than the change within each 
set in response to u(t). The opposite is true when den- 
sity dependence is strong (Fig. 3c). Therefore, stronger 
density dependence produces negative feedback 
against long-term changes in population densities. This 
gives a warning: the population responses to short-term 
environmental fluctuations may give poor estimates of 
the responses to long-term environmental trends, since 
the long-term changes depend on feedbacks operating 
through density-dependent population dynamics. 

Predicting changes in mean 
population density 

There are several ways in which data in the form of 
Eq. 1 could be analyzed to predict changes in mean 
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TIMETIME 

FIG.2. (a)-(c) Changes in the population density rz(t) through time for (a) r = 0.2, (b) 1.0, and (c) 1.8. (d) The 
environmental variable u(t) vs. time. At t = 50 the mean value of ~ i ( t )  increases from 0 to 0.2. In (a)-(c), the dashed 
line for t = 1, . . . , 50 gives the mean population density. The solid line for t = 51, . . . , 100 is the predicted mean 
density (Eq. 5) following the increase in the mean of u(t); dashed lines give the standard errors of the predictions 
obtained from jackknifing. In all graphs w(t) has mean 0 and variance 0.1. 

population densities with long-term trends in u(t). The 
most direct is to find the best-fitting nonlinear model 
for the data and to use this in estimating the conse- 
quences of environmental changes. However, distin- 
guishing the best-fitting nonlinear model may be dif- 
ficult, and the best-fitting model may not necessarily 
give the best predictions of changes in mean population 
density; this is discussed in the next section. Further- 
more, the problem of fitting nonlinear models is greatly 
compounded when analyzing multispecies data sets. 
The approach I have adopted here is to fit linear models 
to data, even though the data are most likely nonlinear. 
An advantage of this approach is that it reveals in a 
heuristic fashion how density dependence affects the 
response of population densities to environmental 
trends. 

To begin, data in the form of Eq. 1 can be fit to the 
linear regression equation 

n(t + 1) = au(t) + b, + (b, + 1)nit) + ~ [ t ,  nit)]. ( 3 )  

In applying linear regression, n(t) and u(t) can be trans- 
formed to increase linearity. Regression coefficients a, 
b,, and b, are calculated from least squares in the stan- 
dard fashion. As an important departure from standard 
regression, the "error term" ~ [ t ,  n(t)] is assumed to 
depend on n(t). The term ~ [ t ,  n(t)] incorporates not only 
variability in the population growth rate driven by en- 

vironmental variability other than that captured by u(t), 
but also variability in the population growth rate caused 
by the residual nonlinear effects n(t) after the linear 
effects are extracted. Thus, Eq. 3 can be regarded as a 
reformulation of Eq. 1, rather than a linear approxi- 
mation. 

Eq. 3 is a phenomenological description of the pop- 
ulation dynamics observed in a data set. The regression 
coefficient a corresponds to the magnitude of the effect 
of u(t) on the population growth rate, and b, gives the 
strength of density dependence in terms of the effect 
of density on the per capita population growth rate. 
These regression coefficients are population-level de- 
scriptors, and as such they cannot be interpreted in 
terms of particular life history characteristics. How- 
ever, the objective here is to make population-level 
predictions about the response of population density to 
environmental trends, and therefore population-level 
descriptors of population dynamics are appropriate. 
The aim of previous theoretical studies has been to 
relate life history characteristics to stochastic popula- 
tion dynamics; for example, May (1973), Turelli 
(1977), Pirnm (1982), and others have asked how vari- 
ability in r vs. K affects the variance in population 
densities in stochastic Lotka-Volterra equations. Since 
these studies are explicitly designed to analyze life his- 
tory characteristics, their parameters must be defined 
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FIG. 3. Population densities n(t + 1) vs. u(t) for (a) r = 
0.2, (b) 1.0, and (c) 1.8. These are the same data as in Fig. 
2. Solid circles correspond to data from t = 1, . . . , 50, and 
open circles are for data from t = 51, . . . , 100. Regression 
lines were f i t  to data before and after the change in the mean 
of u(t). 

as life history characteristics. For making population- 
level predictions about responses to environmental 
trends, an advantage of using the regression coeffi- 
cients a and b, is that they summarize the sensitivity 
of population growth rates to environmental variability 
(a) and density dependence (b,) in a general manner. 
There is no need to impose a particular equation, such 
as the Lotka-Volterra equation, on the data set. 

The problem of how mean population densities re- 
spond to environmental trends requires calculating the 
change in the stationary population distribution re-
sulting from changes in the distribution of u( t ) .  The 
stationary population distribution is the distribution 
that would be produced if population densities were 
accumulated for an infinitely long time (Turelli 1977, 
1978). For any finite data set, the mean population 
density might not exactly equal the mean of the the- 
oretical stationary population distribution, since the va- 

garies of stochastic processes may produce relatively 
high or low population densities in a finite data set. 
However, the mean of the stationary population dis- 
tribution gives the expected mean population density. 

Let N denote the mean density of the stationary pop- 
ulation distribution when the random variable u(t) has 
a mean of U. The problem is to calculate how Nchanges 
with changes in U. At the stationary population dis- 
tribution, E[n(t + I)] = E[iz(t)] = N, since there are 
an infinite number of samples. Therefore, taking the 
mean of both sides of Eq. 3 and solving for N gives N 
= -(aU + b,)lb,. If the mean value of U changes to 
U', the corresponding mean population density is N' 
= -(a1U' + bOf)lb,'. Due to the nonlinearity in the 
relationship between the population growth rate and 
n(t), the regression coefficients a, b,, and b, at the new 
mean U'may be different from those generated for U 
and are therefore marked by apostrophes. Writing AN 
= N 1 - N a n d A U =  U ' - U, 

aAU + AaAU + AaU + Ab, - Ab,N
AN = 

b, + Ab, (4) 

Thus, the change in mean population density depends 
on changes in the mean of the environmental parameter 
AU and changes in the regression coefficients, Aa = 

a ' - a ,  Ab,= b O 1 -  bo,andAb,  = b , '  - b , . I f A a , A b ,  
and Ab, are small, Eq. 4 reduces to 

AN = -AU alb,.  (5) 

This approximation is essentially an extrapolation 
from the observed pattern of population dynamics to 
a new pattern when the mean of the environmental 
variable ~ ( t )  changes. The extrapolation will be good 
provided the regression coefficients a', b,' and b, '  under 
the new environmental regime are similar to those in 
the old environmental regime. However, strong non- 
linearities in the relationship between the population 
growth rate and n(t) may result in significant changes 
in the regression coefficients if there are large changes 
in U. The accuracy of the approximation depends not 
just on the degree of nonlinearities in the population 
growth rate, but also on the naturally occurring short- 
term variability in population density. If the short-term 
variability is large relative to the long-term change in 
the environmental mean, then nonlinearities in the pop- 
ulation growth rate are "averaged out" when applying 
linear regression. With large short-term variability, ap- 
proximation 5 has more the character of interpolation 
than of extrapolation. 

Approximation 5 has the following biological inter- 
pretation. If the environmental stressor u(t) has a large 
effect on the population growth rate (a is large) then 
the mean population density is more sensitive to 
changes in U. However, strong density dependence giv- 
en by the coefficient b, buffers the mean population 
density against changes in U. This is because density 
dependence acts as a negative feedback against changes 
in densities. Although this conclusion is neither new 
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nor surprising, linear regression and approximation 5 
give a simple way to quantify the relative effects of 
environmental change and density dependence on 
changes in mean population densities. 

Applying the prediction to the 
simulated data set 

There are two components to the accuracy of the 
predictions made by Eq. 5: how nonlinearities in the 
population dynamics affect the expectation of the 
change in mean population densities, and how the pre- 
cision of the estimated regression coefficients affects 
the precision of the predicted changes in mean popu- 
lation densities. These two components are examined 
below for the simulated single-species data sets. 

The stationary population distribution of Eq. 2 can 
be calculated numerically as an integral equation (Ives 
and Gilchrist 1993). This makes it possible to calculate 
directly the relationship between changes in the mean 
of u(t) and changes in mean population density at the 
stationary distribution. Fig. 4a-c gives the observed 
and predicted changes in the mean of the stationary 
population distribution with changes in the mean of 
u(t) for r = 0.2, 1, and 1.8, respectively. The regression 
coefficients used in Eq. 5 are calculated from the sta- 
tionary population distribution. Because the stationary 
population distribution has an infinite number of sam- 
ple points, the estimates of regression coefficients are 
perfectly precise. Therefore, the difference between the 
observed and predicted changes in mean population 
density result only from nonlinearities in the population 
dynamics, not from imprecision in the estimates of the 
regression coefficients. As shown from Fig. 4, nonlin- 
earities in the population dynamics tend to make Eq. 
5 underestimate the changes in mean population den- 
sities. Nonetheless, the predictions are still quite good. 

The problem of fitting a model to a finite data set 
can be illustrated by applying Eq. 5 directly to the 
simulated data. Imprecision in the predictions due to 
imprecision in the estimated regression coefficients a 
and b, can be ascertained through jackknifing. Jack-
knifing involves calculating a statistic (in this case, 
a lb,)  for a given data set multiple times, each time 
removing a different subset of points from the data 
(Sokal and Rohlf 1981). To jackknife the simulated data 
sets, I calculated alb, 50 times, removing successively 
each set of points [n(t + l ) ,  n(t), ~l(t)] for t = 1, . . . , 
50 from the linear regression model. From these it is 
possible to calculate the expectation and standard error 
of the statistic alb,,  where the standard error is dis- 
tributed according to a t distribution with 49 degrees 
of freedom. Fig. 2a-c shows the predicted mean pop- 
ulation densities (solid line) with their standard errors 
(dashed lines) for time t = 51, . . . , 100. 

The estimated mean population densities in Fig. 2 
include both inaccuracies due to the application of lin- 
ear regression to nonlinear population dynamics and 
imprecision due to the estimates of regression coeffi- 

FIG.4. Change in the mean log population density with 
changes in the mean value of u(t)  for (a) I- = 0.2, (b) 1.0, 
and (c) 1.8. Solid lines give the true change in the mean of 
the stationary population distribution calculated analytically, 
and the dashed lines give the predictions from Eq. 5 made 
when the mean value of u( t ) is zero. 

cients. In all three cases, the estimated mean population 
density is greater than the observed due to nonlinear 
population dynamics (Fig. 4). Imprecision of the pre- 
dicted mean population densities due to imprecise es- 
timates of the regression coefficients is greater when 
density dependence is weak (Fig. 2a), since weak den- 
sity dependence makes it more difficult to quantify the 
strength of intraspecific interactions. Overall, the ac- 
curacy of the predictions from Eq. 5 is not perfect, but 
it is quite reasonable given the uncertainties that ecol- 
ogists must routinely face. 

One could argue that applying a nonlinear model to 
the data will improve the prediction. However, this de- 
pends on how well a nonlinear model can be fit to the 
data. Table 1 shows the predictions made by fitting four 
different nonlinear models to the simulated data. The 
models are standard single-species equations used by 
a variety of authors (May 1981); model M1 has the 
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TABLE1. Predicted changes in mean log density for data simulated by Eq. 3.  

r = 0.2 I - = 1 	 r = 1.8 

Observed* 0.662 0.176 0.0748 
Linear-/-: n(t)eh~+Mu~'lrz(t)h~ 0.852 0.93 1 0.186 0.794 0.125 0.904 

k0 .160 k0.016 k0.011 
M 1: n(t)ebo+<"'(~)+b~nlf) 0.637 0.93 1 0.170 0.807 0.103 0.938 
M2: n(t)eho+""(')i[l+ b,n(t)] 0.683 0.931 0.205 0.780 0.217 0.295 
M3: rz(t)eho'""(" [ l  + b,n(t)] 0.592 0.93 1 0.156 0.809 0.077 0.859 
M4: n(t)eo+("ilf) 

[ l  + b,n(t) + b,n(t)2] 1.59 0.931 0.095 0.810 0.0989 0.939 

* The observed change in mean log density is calculated as the mean of the first 50 data points subtracted from the mean 
of points 	61-100: the first 10 points after the change in u(t) are excluded to remove transients. 

t This is a linear regression model when population densities are log-transformed. 

same form as Eq. 2 used to generate the simulated data 
set. Models MI-M4 were fit to the first 50 data points 
in the simulated data shown in Fig. 2 after log-trans- 
forming population density. The predicted change in 
mean population density was then calculated from the 
fitted equations. When density dependence is weak (r 
= 0.2),  all four nonlinear models and the linear model 
(Eq. 3) fit the data equally well, although there is a 
range of the predicted changes in mean population den- 
sity. For stronger density dependence, the models that 
fit the data best do not necessarily produce the best 
predictions for changes in mean population densities. 
The message from this exercise is that selecting a best- 
fitting nonlinear model will not necessarily produce 
more accurate predictions of changes in mean popu- 
lation densities. Since there is a large number of pos- 
sible nonlinear models to choose from, trying to ac- 
count for nonlinearities may confuse rather than clarify 

FIG.5. Diagram of the community described by the sim- 
ulation model (Eq. 7). Interaction strength? among species 
shown in the graph are calculated as the change in population 
growth rate of species i with changes in population density 
of species j calculated at equilibrium for the deterministic 
version of Eq. 7. Numbers within the species squares (com- 
petitors) or circle (predator) give the strength of intraspecific 
interactions. The heavy arrows give the effect of the envi- 
ronmental factor u(r). 

the predictions. The simpler approach advocated here 
is to use linear regression and realize that this will 
generally lead to overestimates in the predicted changes 
in mean population densities. 

For a species embedded in an ecological community, 
the response of the population to environmental change 
will depend in a complex way on the web of interac- 
tions among species. The data analyzed in this section 
for a community of S species have the general form 

where n,(t) is the population density of species i in 
sample t, andJ is its population growth rate. ,f; depends 
on the densities of all S species in the community, the 
environmental variable u(t) which undergoes a direc- 
tional change in mean or variance, and the random 
variable w,(t) summarizing all of the environmental 
variability not included in ~ ( t ) .Since the environmental 
changes may affect different species differently, the 
dependence ofL  on u(t) may be different for each spe- 
cies. Also, species may be affected by different envi- 
ronmental factors, so w,(t) may be different for each 
species. 

The problen~ in this section is the same as in the 
single-species case: how do changes in the mean of u(t) 
change the mean abundance of each species in the com- -
munity? 

Sirnuluted four -spec ies  e x a n ~ p l e  

In this section I construct a four-species simulated 
data set that I will then use to illustrate the prediction 
techniques developed in subsequent sections. The four- 
species simulated data set is not meant to be realistic 
by incorporating many details that might be found in 
a real biological system. However, it is moderately 
complex and therefore presents a considerable chal- 
lenge to the prediction techniques. 

The four-species model consists of three competitors 
and a predator that attacks two of the competitors. Fig. 
5 shows a food web of the system. The competitors 
have discrete-time Lokta-Volterra dynamics, and the 
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predator has a Type I1 functional response (Holling 
1959) and additional intraspecific density dependence 
that might occur if it had prey other than the two species 
of competitors explicitly modeled in the system. The 
equations governing the population dynamics are 

Here, n, ( t ) ,  n,(t), and n,(t) are the densities of the com- 
petitors at time t, and n4(t)is the density of the predator. 
For species 1 and 2, the density-independent per capita 
population growth rate, ew~+q~u(r)+w~(r)( i  = 1, 2 ) ,  depends 
on the constant k,, the environmental variable u(t) 
scaled by q,, and a random variable w,(t)to account for 
environmental variability other than that produced by 
~ ( 1 ) .For species 3 and 4, the density-independent per 
capita population growth rates are similar but do not 
depend on u(t) .For all four species, the random vari- 
ables o,( t) are assumed to follow independent normal 
distributions, and because they appear as exponential 
terms, the per capita population growth rate is lognor- 
mally distributed. For the competitors, intra- and in- 
terspecific competition are governed by the terms 
-a,JnJ(t),which give the decrease in the population 
growth rate of species i with changes in the density of 
species j. The per capita predation rate on species 1 
and 2 is given by the Type I1 functional response 
c,,n,(t)l[l + c,,h,,n,,(t)] ( i  = 1, 2 ) ,  where c,, scales the 
overall attack rate, and h,, determines the strength of 
nonlinearity in the functional response. The larger the 
value of h,,, the more rapidly the per capita predation 
rate decelerates with increasing prey density. In the 
predator population growth rate, g, (i = 1 ,  2 )  scales the 
conversion of depredated prey into predator reproduc- 
tion. The predator experiences intraspecific competi- 

tion through the term a,,n,(t), and there is a density- 
independent per-capita death rate of d,. 

To add complexity to the environmental variable u(t) ,  
I assume that it is temporally autocorrelated. Specifi- 
cally, ~ ( t )= rn c o s ( 2 ~tlp) + q ( t )where p is the period 
and m is the amplitude of the autocorrelated component 
of ~ ( t ) ,while q ( t ) is a random variable adding uncor- 
related variability to ~ ( t ) .For the simulation example, 
p = 10, which corresponds to the case in which u(t)  
shows seasonal fluctuations and population densities 
are sampled 10 times each year. Eq. 7 might be a model 
for terrestrial insects such as aphids and parasitic wasps 
that have multiple overlapping generations per year, or 
species of herbivorous and carnivorous zooplankton. 

Fig. 6a-d shows the population densities of the four 
species for 20 yr (200 iterations of Eq. 7 ) ,and Fig. 6e 
shows values of u(t) .For the first 10 yr the annual mean 
of u(t) equals 0 ,  and at t = 100 it increases to 1.5. In 
response, population densities of all four species in- 
crease or decrease. Fig. 7 shows the same data as Fig. 
6, but population densities n,(t+ 1 )  are graphed against 
u(t). Black dots correspond to the first 10 yr and gray 
dots correspond to the second 10 yr, with regression 
lines fitted to each set of points. For both species 1 and 
2, q, is positive, so increases in u(t) increase their per- 
capita population growth rates. This is seen in the pos- 
itive slopes of the regressions of n,(t + 1 )  vs. u(t) .  
However, with the increase in the mean of u(t)  at t = 

100, the mean density of species 1 decreases. This 
shows that the response of populations to short-term 
environmental fluctuations may be very different from 
the response to long-term environmental trends, due to 
the feedbacks operating through the interactions among 
species. An explanation for the response of species 1 
is given in detail in The pattern of environmental and 
species interactions. 

Predicting changes in mean population density 

The approach to the multispecies case is the same 
as for the single-species case. Rather than try to con- 
struct a complicated mechanistic model and estimate 
its numerous parameters, instead I apply simple linear 
regression to data in the form of Eq. 6. The linear 
reformulation of Eq. 6 is 

As in Eq. 3, the terms a, and b,, are least squares re- 
gression coefficients, and E, is an "error term" that 
includes both environmental variability not associated 
with the environmental parameter u(t) and variability 
due to the nonlinear component of interactions among 
species. The problem is to estimate the change in the 
mean of the stationary population distribution of spe- 
cies i when the mean of u(t) changes. 

Taking the expectation of both sides of Eq. 8 for all 
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TIME 

S species in the community gives a set of S equations 
with S unknown values of the mean population den- 
sities for each species. Solving these equations for two 
different values of the mean environmental parameter, 
U and U', and assuming that the difference between 
the regression parameters a, and b ,  for U and U' are 
negligible, gives the following solution for the change 
in mean population density of species i, AN,, for a given 
change in the mean value of LL(~) ,  AU (Apostol 1969): 

det(B,, . . . , B,-,, A, B,+,, . . . , B,)
AN, = -AU . (9)

det(B,, B,, . . . , B,) 

where 

A = [a , ,  a2,. . . , a , ] ,  

B, = [b,,, . . . , b,s,l, 

and det( ) represents the determinant of the matrix com- 
posed of the specified vectors. In biological terms, the 
vector B, measures the effect of species j on all of the 

TIME 

FIG.6.  Population densities for species 1-4 and u(t) 
through time for the simulation model given by Eq. (7). 
At t = 100 the mean value of u( t )  increases from 0 to 1.5. 
In (a)-(d), the dashed line for t = 1, . . . , 100 gives the 
mean population density. The solid line for t = 101, . . . , 
200 is the predicted mean density (Eq. 9) following the 
increase in the mean of u(t); dashed lines give the standard 
errors of the predictions obtained from jackknifing. The 
remaining parameter values used in Eq. 7 are given in 
Table 2B. 

other species in the community. Since B, measures the 
sign and magnitude of interactions that species j has 
with other species, we can describe the ecological role 
of species j as the pattern given by B,. The vector A 
measures the effect of the environmental parameter u(t) 
on all of the species in the community. Thus, the de- 
nominator of Eq. 9 is the determinant of the matrix 
describing all ecological interactions in the community, 
while the numerator is the determinant of the matrix 
in the denominator, but with the effects of species j on 
all other species replaced with the effect of the envi- 
ronmental stressor on the population growth rates of 
these species. Eq. 9 is simply a statement of "Cramer's 
Rule" (Apostol 1969) which has been used in deter- 
ministic community models in a number of contexts 
(Levins 1975, Levine 1976, Harrison and Fekete 1980, 
Oksanen et al. 1981. Yodzis 1989, Puccia and Levins 
1991). 

Fig. 6 shows the predicted change in mean popula- 
tion density for each species given by Eq. 9 as a solid 
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FIG.7 .  Population densities n(t + I) vs. u(t) for (a) species 1, (b) species 2, (c) species 3, and (d) species 4. These are 
the same data as in Fig. 6. Solid circles correspond to data from t = 1, . . . , 100, and open circles are for data from t = 
101, . . . , 200. Regression lines were fit to data before and after the change in the mean of u(t). 

line. In applying the regression model of Eq. 8. coef- 
ficients for nonexistent interactions in the food web 
(Fig. 5 )  were set to zero (b,, = b,, = a ,  = a, = 0). 
Jackknifing was used to calculate standard errors of the 
estimate in the same manner as for the single species. 
As shown by the graphs, the predicted changes in mean 
densities are reasonably good, although the method un- 
derestimates the changes in mean densities for species 
1 and 3. The standard errors indicate that some of the 
underestimation might come from imprecision in the 
estimates of the regression coefficients, although non- 
linearities in the model given by Eq. 7 also play a part. 
Because the stationary population distribution for Eq. 
7 cannot be solved numerically, it is impossible to de- 
termine exactly how nonlinearities affect changes in 
mean population densities. Finally, species 1 is on the 
verge of extinction; an increase in the mean of u(t) by 
an additional 0.5 leads specics 1 to go extinct. Because 
the data used in the regression model were first log 
transformed, Eq. 9 will not predict the extinction of 
species, since this corresponds to densities of minus 
infinity. However, applying Eq. 9 to untransformed data 
does predict the extinction of species 1 for larger in- 
creases in the mean of u(t). Thus, to predict extinctions 
it is best to use untransformed data. 

One might suspect that fitting an appropriate non- 
linear model to the data set will improve the prcdictions 
for changes in mean population densities. In fact, this 
is not necessarily the case. I fit the first 10 yr of data 
to a nonlinear least squares regression model (Wilkin- 

son 1987) having the same structure as Eq. 7 ,  the equa- 
tion used to generate the simulated data. Nonlinear re- 
gression gave nonsensical negative values for the 
parameters h,,  and h,,, so I set these parameters to zero. 
This removes the Type I1 functional response from the 
nonlinear regression model. After fitting the other pa- 
rameters, I solved Eq. 7 numerically to give the pop- 
ulation densities before and after the change in the 
mean of u(t) assuming no environmental variability. 
When the mean of u(t) equals 1.5, the fitted equations 
predict that species 1 goes extinct. However, simulating 
the case in which u(t) varies cyclically ( m  = 0.4, p = 

10) but not stochastically (variances in o,(t) and q(t) 
equal zero) produced persistence of species 1 ,  so 
changes in mean density were determined from the nu- 
merical simulations. Table 2A gives the predicted 
changes in mean population densities calculated from 
nonlinear and linear regression (Eq. 9). For species 2, 
3, and 4, the predictions from both techniques are sim- 
ilar, although Eq. 9 does slightly better. For species I ,  
Eq. 9 is considerably more accurate. 

This result might seem peculiar, since the nonlinear 
regression model should capture the dynamics of the 
simulated data better than linear regression. However, 
parameters in a nonlinear regression model may be 
difficult to estimate. Table 2B gives the estimated pa- 
rameters from nonlinear regression to compare with the 
parameters used in the simulation. Some of the esti- 
mated parameters are far from their true values, es-
pecially a,,,a,,,g, ,  and d,. The advantage of linear 
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TABLE2. (A) Observed and predicted changes in mean log population density using two prediction methods for the four- 
species simulation data. 

Predicted from linear regression Predicted from nonlinear 
Species Observed AN (Eq. 9) regression 

(B)  True values of parameters in Eq. 7 and estimates from nonlinear regression. 

Para. Value Est. Para. Value Est. Para. Value Est. Para. Value Est. 


* Estimated values set to zero; otherwise, nonsensical values are produced. 

regression is that the regression parameters enter as 
additive terms, which tends to make estimates much 
more robust. 

The pattern of environmental and 
species interactions 

Although Eq. 9 gives a mathematical prediction 
about changes in mean population densities, its bio- 
logical interpretation is opaque. However, it can be 
expressed in a manner that brings out biologically 
meaningful patterns. This is done by noting the geo- 
metrical interpretation of determinants. Several defi- 
nitions are necessary. First, IB,I denotes the magnitude 
of B, defined by ( b I d 2+ bZd2 The angle + . . . + bs,,2)112. 

FIG.8. Diagram giving a graphical interpretation of Eq. 
10 for a three-species community. Vectors B,  are defined by 
the points [b , , .  b2,, b,,], and A is defined by [ u , ,a,, a?].  The 
quantities llB,lI cos p,  and bl cos a ,  are the projections of 
B ,  and A onto the vector orthogonal to the surface spanned 
by B2 and B 3 .  

P, is the angle between vector B, and the vector or- 
thogonal to the surface defined by all the vectors B, 
excluding B,. For the case of a three-species commu- 
nity, Fig. 8 illustrates the angle P , .  This angle gives a 
composite measure of how similar the ecological role 
of species j is compared to the ecological roles of other 
species in the community. Values of p ,  close to zero 
or 180" ( B ,  almost orthogonal to the plane in Fig. 8) 
correspond to the case when species j has distinctly 
different patterns of interactions with other species. 
Values of p, close to 90' ( B ,almost in the plane in Fig. 
8) imply that species j has the same ecological impact 
on other species as some other species or combination 
of species in the community. Finally, the angle a, is 
the angle between vector A and the vector orthogonal 
to the surface defined by all the vectors B, excluding 
B, (Fig. 8). As with P,, a, measures how similar the 
effects of changing the mean value of u( t ) is to chang- 
ing the densities of any species other than species j. 

With these definitions, Eq. 9 can be written 

AN, = -AU 	All cos a, 
IIB, cos P, 

This equation can be most easily understood by noting 
that the numerator and denominator are the projections 
of the vectors A and B,, respectively, onto the vector 
orthogonal to the plane defined by B, ( i  # j ) .  Eq. 10 
collapses the multispecies system into a single dimen- 
sion by rotating the axes of orientation. In the single- 
species system analyzed previously, the change in 
mean population density depends on the regression co- 
efficients a and b,  (Eq. 5). In Eq. 10, (wl(cos q and 
IB,I cos p, serve the same roles as a and b , ,respectively. 

Eq. 10 can be understood by noting that following 
an environmental change, mean population densities of 
all species in a community must change to return the 
mean population growth rates of all species to one. For 
species that exert a strong effect on population growth 
rates (IB,I large), relatively small changes in mean den- 
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TABLE3. (A) Patterns of interactions for the simulated data 
from Eq. 7. 

IlAIlcos a 
Species B,llcos P cos q llB,I cosP ,  

1 -0.82 0.24 0.35 
2 0.80 -0.52 0.53 : 
3 -0.36 0.35 0.61 0.68 
4 0.54 -0.32 0.73 0.30 

(B) Regression coefficients for the first 100 points of simu- 
lated data from Eq. 7. 

Species b,, b,, b,, b,, a, 


1 0 . 3 2  -0.27 -0.097 -0.59 0.15 
2 0 . 1 2  0 . 3 3  -0.052 -0.36 0.25 
3 -0.012 0 . 2 8  0 . 6 0  0 O 
4 0 . 0 3 3  0.13 0 -0.23 0 

sity have large effects on population growth rates. This 
reduces the change in the mean density of species j 
needed to counteract the environmental change. Spe- 
cies that occupy distinct ecological roles in the com- 
munity (cos p, large) are also buffered against changes 
in mean density because they cannot easily supplant or 
be supplanted by other species in the community. Fi- 
nally, the change in the mean population density of 
species j will be small when the pattern of effects of 
u(t) on population growth rates is similar to the patterns 
exerted by other species in the community (cos a, 
small). This is because changes in population growth 
rates brought about by the environ~nental change can 
bc offset by changes in mean densities of species in 
the community other than species j. 

Table 3A gives values of IB,II, cos a,, and cos P, for 
each of the four species whose dynamics are given by 
Eq. 7. Table 3B gives the regression coefficients cal- 
culated from the model of Eq. 8; b,,gives the effect of 
species j on the population growth rate of species i, 
and the vectors B ,  are the columns in the table. Mean 
population densities decrease following an environ-
mental change if the projections of A and B, onto the 
vector orthogonal to B,  (i # j) have the same sign (Fig. 
8). This is the case for species 1. Even though the direct 
effect of the environmental change is to increase the 
population growth rate of species 1 ( a ,  = 0.15), strong 
indirect interactions with other species rotate the axis 
of orientation (cos q,cos 0, > 0) so A and B, lie on 
the same side of the surface defined by B ,  (i # j). 
Examining the regression coefficients, this results from 
a combination of direct competition with species 2 and 
"apparent" competition (Holt 1977, Abrams 1987) 
with species 2 through the shared predator species 4. 
The magnitudes of the change in mean population den- 
sity of species 1 and 2 are similar, although for different 
reasons. Species 2 experiences relatively strong den- 
sity-dependent buffering against changes in mean den- 
sity (llB,ll cos P2 = 0.27 vs. llB,ll cos P,  = 0.10), al- 
though it suffers a relatively greater impact of the 
environment change (IN1 cos a, = -0.22 vs. cos 

= 0,083). ~ i ~ ~ l l ~ ,  are relativelyspecies 3 and 4 
strongly buffered against change in mean population 
density due to density dependence (IB,I cos P, = 0.41, 
B,I cos p, = 0.22). 

To summarize the overall pattern exhibited by the 
four species, one can ask how important is cos a, 

relative to 1IBjI cos P, in explaining the different mag- 
nitudes of response of species to the change in the mean 
of ~ ( ~ 1 .  = l0g(lAUI) + l0g(hl1From Eq. lo ,  log(lAN~l) 
cos a,) - log(llB,lI cos PI), and taking the variance of 
both sides of this equality, ~ [ l o g ( l A ~ , I ) ]  = V[log(hll 

COs a,)] + V[log(lIB, cos PI)] - COV[log(lhl cos a,), 
log(IB,I cos P,)]. For the four species in the simulation, 
V[log(hl  cos a,)] = 0.10, V[log(llB,lI cos PI)] = 0.35, 
and COV[log(lw cos a,), log(B,I cos PI)] = -0.12. 
Therefore, variation in IB,lI cos P, explains roughly 
three times more of the variance in l'og(l~N,I) than vari- 
ation in cos a,. In other words, differences in den- 
sity dependence experienced by different species are 
more important than differences in the effect of the 
environment on population growth rates when explain- 
ing the magnitude of response of different species to 
changes in the mean of u(t). 

Compensatory responses in mean densities 

From Eq. 10, species that are similar to each other 
will likely show large changes in mean population den- 
sity following an environmental change, because the 
buffering effect of density dependence IB,I cos P, for 
each species will be weak. The question addressed here 
is whether the change in mean density of species i is 
opposite from the change in mean density of a similar 
species j. In other words, are changes in mean densities 
of similar species compensatory (Frost et al. 1994)? 

To measure density compensation between two spe- 
cies, let 

(AN, + AN,)2 -
Xa.1 = AN,2 + N,2 

The numerator is the square of the expected change in 
the sum N, + N,, and the denominator is the sum of 
the squared expected changes in densities of each sep- 
arate species. If complete compensation occurs. then 
AN, = -Ah:, and x,, = -1. On the other hand, if 
changes in mean densities are complementary, then AN, 
= AN,, and x,,, = 1. Values of x,,, between -1 and 1 
give the full range from compensation to complemen- 
tation. 

To derive an expression for x,,, in terms of interac- 
tions among species, first define +,, as the angle be- 
tween B,  and the vector orthogonal to the vectors B, 
(k # i, j) and A. The angles +,,, and +,,, are depicted 
in Fig. 9. Deline 0 , , as the difference between $,, and 
+,,, and definc y,,, as the average of +,,, and +,,,; y,,, = 

(+,, + +,,,)/2. Heuristically, €I,,measures the similarity 
between B ,  and B, relative to the vector orthogonal to 
the vectors B, (k # i, j)  and A,while y,,, measures the 
similarity between the pair of species and the other 
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FIG.9. Diagram giving a graphical interpretation of an- 
gles +,,, and +, ,, which are the angles between B ,  and B ,  
and the vector orthogonal to the surface spanned by B ,  and A. 

species in the community. With these definitions (Ap- 
pendix) 

Fig. 10 shows x , ,  for different values of y , ,  and O,, ,  
when IB,lI = IB,I. Compensation is greatest for a pair 
of species when they are similar to each other (O,,, 
small), but different from the other species in the com- 
munity, and different from the effects of the environ- 
mental stressor ,u(t) ( y , , ,small). 

This result can be explained in biological terms. The 
greater the similarity between two species in terms of 
interactions with other species, the more a decrease in 
density of one species will be balanced by an increase 
in density of the other. This is because, with the re- 
duction of one species, the other can fill its ecological 
position in the community. Furthermore, compensation 
increases with the differences between the pair of spe- 
cies and the other species in the community. If the two 
species are considered as an aggregate single species, 
then the greater their difference from the remaining 
species, the greater the buffering of their combined 
density against changes in the environmental mean. 
This in turn implies greater compensation between the 
species in order for there to be little change in the sum 
of their densities. The final component is the pattern 
of effects exerted by the environmental stressor. If A 
is similar to B ,  and B , ,  then the environmental effects 
on species i and j will be greater than those for other 
species. Therefore, they will both respond similarly to 
the environmental stressor, and this will decrease com- 
pensation. 

Table 4 gives values of O , , ,  y ,,,, and x,,, for each of 
the pairs of species in the simulated data from Eq. 7. 
As measured by 0,,,, the pair of species (1, 2) are the 
most similar (O,,,= -2.9), which leads to strong com- 
pensation ( x , , ,  = -0.97). As measured by y ,,,, the av- 
erage effects of the species pair (2, 4) is very similar 
to the combined effects of the environment and other 

Similarity between species Oi,i 

FIG. 10. The degree of compensation x,,, (Eq. 12) as a 
function of the angle O,, ,  for different values of y,,.  H,,, measures 
the difference between B ,  and B, orthogonal to the surface 
defined by the remaining values of B,  and A. y , ,  measures 
the difference between the sum of B ,  and B,, and the vector 
orthogonal to remaining values of B ,  and A. The magnitudes 
of B ,  and B,, llB,ll and lB,ll. are equal. The shape of Eq. 12 
depends on the relative magnitudes of B ,  and B,. although the 
general shape is similar to that depicted in the figure. 

species in the community ( y , , ,  = 89.5) which leads to 
strong complementation (x , , ,  = 0.97). Note that for the 
species pair (2, 4) the very strong complementation 
results from a value of y ,  ,close to 90" rather than 
from a value of O , , ,  close to 180" (Fig. 10). Thus, even 
though species 2 and 4 are not particularly dissimilar 
from each other (O,,, = -29), they still show strong 
complementation due to their pattern of interaction 
with the environment and other species in the com- 
munity. 

This paper has developed methods to predict the 
long-term changes in population densities that result 
from changes in an environmental stressor. The pre- 
dictions are made using data on the short-term fluc- 
tuations in population densities driven by short-term 
environmental variability. The distinction between 
short- and long-term fluctuations in population densi- 
ties is critical. Short-term population fluctuations re-
flect direct effects of environmental variability and 
interactions among species on population growth rates. 
In contrast, long-term changes in population densities 
may depend strongly on the indirect effects of inter- 
actions within and among species in a community. This 
distinction between short- and long-term changes in 

TABLE4. Measurement of compensation for the simulated 
data from Eq. 7. 

Sp. i Sp. j @,,, Y,, X ~ I  

1 2 -2.9 75 -0.97 
1 3 37 85 0.62 
1 4 -9.4 5 6 0 . 8 9  
2 3 46 37 0 . 7 4  
2 4 2 9  89.5 0.97 
3 4 1 3  72 0 . 8 6  
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population densities is highlighted in Figs. 3 and 7, in 
which long-term changes in mean population densities 
in response to an environmental shift are much different 
than those observed at a shorter time scale. 

To characterize interactions among species, the tech- 
niques developed here employ linear regression. The 
philosophy behind this approach is that linear regres- 
sion gives the most powerful and easily applied sta- 
tistical technique for examining interactions among 
species. An alternative approach might be to design a 
system-specific, detail-rich model for a given com-
munity and then analyze how the model responds to 
changes in an environmental stress parameter. Al-
though there are clear advantages to this system-spe- 
cific approach, it is limited by the amount of data need- 
ed to properly characterize a system and estimate model 
parameters. Nonlinearities in species interactions are 
notoriously difficult to characterize from data (Morris 
1990, Carpenter et al. 1994). In the simulated multi- 
species example analyzed here, the linear regression 
approach gives better predictions than those from a 
nonlinear regression model, even though the nonlinear 
model has the same structure as the simulation model 
used to produce the data. This suggests that trying to 
incorporate nonlinearities may only muddy the predic- 
tions, because nonlinear models are more difficult to 
fit statistically than linear models. Of course, it is im- 
possible to claim any generality from a single example, 
and more sophisticated methods than the ones I used 
for fitting nonlinear models may be more successful. 
However, this serves as an illustration that trying to 
incorporate nonlinearities is not essential to make pre- 
dictions about changes in mean population densities. 

In addition to quantitative predictions of long-term 
changes in population densities, the formulae derived 
throughout the paper give heuristic explanations for 
expected responses to environmental trends. When 
there are changes in the mean of an environmental 
stressor that affects population growth rates, the re- 
sponse of the mean population density of a species 
depends on the strength of the density-dependent in- 
teractions it exerts on itself and other species in the 
community; the greater the impact of a species on the 
population growth rates of other species in the com- 
munity, the more that species is buffered against 
changes in the environmental mean (Eq. 10). The buf- 
fering effect of species interactions depends not only 
on the strength of interactions, but also on the pattern 
of interactions that defines the ecological functional 
role of a species in a community. 'species that have 
unique ecological functions experience strong negative 
feedbacks against changes in their mean density. To- 
gether, these imply that "important" species in a com- 
munity-those that interact strongly with other species 
and perform a unique ecological function-are the most 
strongly buffered by community interactions. A cor- 
ollary of this result has practical application in con- 
servation biology and ecological management. In 

searching for indicator species that are sensitive to en- 
viron~nental disturbances, unique and strongly inter- 
acting species might make poor candidates due to the 
buffering effect of species interactions. This is not a 
hard and fast rule, since equally important is the sen- 
sitivity of population growth rates to the environmental 
stressor. However, all else being equal, functionally 
redundant species might make the best indicators of 
environmental change. This hypothesis is also derived 
by Carpenter et al. (1993) based on experimental ma- 
nipulations of lake ecosystems; good indicator species 
are likely to be those whose ecological roles can be 
substituted by other species in the community. 

When subject to an environmental trend, the mean 
densities of all interacting species in a community will 
shift in a complex pattern determined by the sensitivity 
of all species to the environmental stressor and the 
indirect effects of species interactions. To disentangle 
the complex community responses to environmental 
change, the community can be broken down into clus- 
ters of species having roughly the same ecological 
function. Within a cluster, changes in mean densities 
of species relative to each other will likely be large, 
while changes in the average mean density of species 
in the cluster relative to other clusters in the community 
will likely be small. This pattern is shown formally for 
clusters consisting of pairs of species in Eq. 12. (The 
analysis can be extended to larger clusters, although 
the requisite profusion of terms characterizing the sim- 
ilarity among species within and among the clusters 
makes the analysis cumbersome.) This result adds the- 
oretical support to the relationship between the func- 
tional redundancy of species in a community and den- 
sity compensation when subject to environmental 
change (Vitousek 1990, Frost et al. 1994). 

This paper is aimed at predicting long-term changes 
in population densities, and all of the results are derived 
in terrns of stationary population distributions. Critical 
issues that have not been addressed are how long it 
takes populations to reach the stationary population 
distribution, and how much data are needed to test the 
predictions with sufficient statistical power. Answers 
to these questions will depend strongly on the number 
of species in the community, the type of interactions 
among species, the amount of variability in population 
densities and the environment before an environmental 
change, and the quality of the data. Before applying 
the techniques to a particular data set, it would be wis- 
est to construct a simulation model that mimics the 
dynamics of the system and test the techniques on the 
simulated data. Although the techniques worked well 
for the simulation models used here, I suspect they will 
fail when confronted with short data sets for many 
species that do not exhibit enough inherent variability 
to estimate regression coefficients accurately. 

Despite the potential for complex positive and neg- 
ative feedbacks driven by interactions within and 
among species, this paper provides simple qualitative 



940 ANTHONY R. IVES 	 Ecology, Vol. 76, No. 3 

and quantitative predictions for how long-term envi- 
ronmental changes will affect population densities. The 
predictions are simple enough that they should be test- 
able in a number of ecological systems. The main dif- 
ficulty in predicting the consequences of environmental 
changes is the need to know the rudiments of how 
ecological systems work in the first place. Since we 
know little about the details of how ecological systems 
work, it seems reasonable to base predictions on the 
simplest possible information that can be extracted 
from data. This is the tack I have taken here. 
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APPENDIX 

This appendix derives Eq. 12 giving the degree of com- 
pensation of two species subject to an environmental change. 

For notational clarity, consider the change in densities of 
species 1 and 2. From Eq. 9, the sum of the changes in mean 
density of species 1 and 2 is 

AN, + AN, 

det(A, B,, B,, . . . , B,) + del(B,, A, B,, . . . , B,) 
= -4u 

det(B,, B2, B,, . . . , B,) 

Noting that det(A, R,, B,, . . . , B,) = d e t ( B , ,  A, B,, . . . , 

B,) 


AAT14- AN2 


- AuillBI cos 4 , - B,, . . . , B,)IB,lI cos + , , ~ d e t ( ~ ,  
det(Bl, B,, B,, . . . , B,) 

where B, denotes the vector of length S-1 formed by removing 
the first element in B, (Apostol 1969). With the definition of 
x , , ~in Eq. 11, Eq. A2 leads directly to Eq. 12. 
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